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Abstract-For a semi-infinite circular elastic cylinder z ;;r: 0, r --I deformed solely by a distribution of stress
and displacements on its lIat end z '" 0, the Love stress function can be expanded in a series of
eigenfunctions of known form. For problems in which suitable mixed stress and displacements boundary
conditions are prescribed on z'" 0 the coefficients appearing in the expansion can be determined in an
explicit form via sets of biorthogonaJ functions. When normal and shear stresses are prescribed on z '" 0 no
such closed expressions for the coefficients exist and approximate methods usually lead to infinite systems
of linear equations which are solved by truncation. Stability of solution as the order of truncation is
increased can only be guaranteed theoretically when the infinite matrix is diagonally dominated, and this is
not the case for existing methods. A Galerkin method has been developed using weighting functions chosen
so as to optimise the diagonal dominance of tbe infinite matrix, and numerical results show that, although
the resulting matrix is not completely diagonally dominated, the resulting coefficients show an improvement
in stability in the sense that they do not change significantly as the order of truncation is increased.

I. INTRODUCTION
The Love stress function 4>(r, z) in an elastic cylinder z ~ 0, r E; 1 subjected to homogeneous
boundary conditions on the curved boundary r =I can be expressed as an eigenfunction
expansion of the form

2 c_q,(r; An) exp( - AnZ)
n

(1.1)

where An is an eigenvalue determined from the conditions on r =1. For the case of a
traction-free curved face, An is a root of

(1.2)

Little and Childs[l] have given a construction for determining the coefficients c_ in the
expansion (1.1) for cases in which the data on the flat end Z = 0 takes the form of prescribed
values of either of the pairs

U zz and u,

or

Un and Uz•

(1.3)

For these "canonical" problems the {cn} are found explicitly as quadratures of the data with
appropriate biorthogonal functions derived from the q,(r; An)'

In the present paper we consider the problem of determining the coefficients when U zz and
Un are prescribed. It is known that no explicit solution exists for this case, and the {en} must be
found by approximate methods leading in general to infinite matrices which can only be
inverted in truncated form.

This problem has already been studied extensively for the elastic strip, x ~ 0, Iyl:s= 1.
Spence[2] introduced a set of weighting functions derived from members of the family of

tPresent Address; Department of Mathematics, University of Strathclyde, Livingstone Tower, Richmond Street, Glasgow
GI IXH, Scotland.
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biorthogonal functions, which in the case of the traction problem for the strip, namely

U'" U x )" prescribed on x = 0

lead to a diagonally dominated system of equations

2, A",ncn = dm

"
(1.4)

where A= 1- G, with the row sum norm IIGII < 1. For such a system, the solution C
INI say, of the

truncated system

N
" AlN1C (N) = d (NI.4J mn n m
"=1

( 1.5)

is known to converge to the solution of the full system as N -+ Xi, and this was borne out for
the cases tested, in which it was found that changing the order of truncation N did not lead to
significant changes in the coefficients. This was not found to be the case with other published
methods that were tested.

2. THE NEW FORMULATION

The construction given by Little and Childs[l] for obtaining biorthogonal functions for the
two canonical end problems for the elastic cylinder, thus enabling them to obtain the
coefficients appearing in (1.1) explicitly, has not proved to be the most suitable for the present
studies. The main disadvantage is that for the stress problem it is not possible to "optimise" the
weighting functions, thus improving the diagonal dominance of the infinite matrix arising in this
problem. Consequently we choose a different but equivalent set of four stress- and displace­
ment-related variables which will be prescribed on z =O.

In terms of the biharmonic "Love" stress function (Love[3], Art. 188) the stresses and
displacements are given by

where l' is Poisson's ratio and

o 1 a a a" 0 a2

V- = - - r- + -::-'I == B- +~.
r ar ar az· az·

(2.1,2)

(2.3,4)

(2.5,6)

(2.7)

If the cylinder is subjected to stress-free side conditions on r = I and a self-equilibrating
distribution of stresses and displacements on z = 0 then <I> may be expanded as an eigenfunction
expansion

where An is a root of

and

<I>(r, z) = 2: Cnq,(r; An) e- An
'

n

(2.8)

(2.9)

(2.10)
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Fig. I. First 50 cylinder eigenvalues.

The correct interpretation of the summation (2.8) is obtained by numbering the roots of (2.9) in
the right half-plane so that L. = A. (see Fig. 1) and writing the expansion more precisely as

n=+o:c

<I>(r, z) = L 'c.<p(r; An) exp( - Anz)
n=-:x

(2.11)

where the prime indicates that the term with n =0 does not appear in the summation. This
implies that the normal stress distribution is equilibrated. i.e. fd ruzz(r, 0) dr = O.

The present choise of prescribed functions together with their expansions in terms of the
"derived" functions tP,,(Ql(r) are given by

t'l(r) au::1ar tPn(l)( r)
P2l( r) u,: <p,,(2)( r)

to)( r) = - (1- 2v) :r B 2<p: +2v<l>z:z, = L Cn <Pn(3)( r) (2.12)

rl(r) (1 + v) :rV
2

<1> :=0
<Pn(4)(r)

This can be seen to be equivalent to prescribing the unmodified stresses and displacements as in
Little and Childs-e.g. if U zz and u, are known on z = 0, then so are pll and to) as defined
above.

In terms of <p(r; A) the derived functions <Pn(Q) are given by

<p.(I)(r) = - A.{(2 - v) :rB2<J> +(1- v)A/· ~~}

<p (2)(r) = (1- v)..! B2<J> - vA 2. d<J>
• dr n dr

<p.(3)(r) = - A. { - (1- 2v) :r B2<J> +2vA/· ~~}

<p.(4)(r) = (I + v){..! B2<p + A.. 2. d<J>}
dr n dr

(2.13)

(2.14)

(2.15)

(2.16)
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and explicit expressions for these functions in terms of Bessel functions are

cI>"(I)(r)::= A"4{A"JI(.~")rJO(A"r) + [2J 1(A") - A"JO(A")]J1(A"r)}

cI>"(2)(r)::= A"4{ - J1(A")rJO(A"r) + JO(A")J1(A"r)}

cl>n(})(r)::= A/{ - A"J,(A")rJO(A"r) + [2I'J1(A") + A"JO(A")]J 1(A"r)}

cI>"(4)(r)::= - 2(1 + I' )A/J1(A")J1(A"r).

3. DERIVATION OF BIORTHOGONAL FUNCTIONS
cI>(r; A) is a solution of the reduced biharmonic equation

[
I d d ]2--r-+ A2 cI>::= 0
r dr dr '

(2.17)

(2.18)

(2.19)

(2.20)

(3.1)

and as in Spence [2] this equation may be expressed as a matrix differential equation in either
-I.. (I) d -I.. (}) -I.. (2) d -I.. (4)t F h' ..
'I'm an 'I'm or 'I'm an 'I'm . or t e (1, 3)-canomcal problem the matnx equatIOn

(3.2)

can readily be shown using (2.13, 15) to reduce to

(3.3)

The condition u" ::= 0 on r::= 1 may be written in terms of cl>m(l) and cl>m(}) as

(3.4)

The corresponding boundary condition for U" is

(3.5)

where D == d/dr. The derivatives of cl>m(l) and cl>m(3) contain the fourth derivatives of cI>, and in
obtaining (3.5) it has been necessary to use the reduced biharmonic equation (3.1) evaluated at
r::: 1 to express the u" condition in the required form.

As in Spence [2] the functions t/J"(I) and t/J"O) which are biorthogonal to cl>m(l) and cl>mO) are
obtained as the eigenfunctions of the differential operator adjoint to (3.2).t If t1J"(I.3) satisfies the
equation

(which is the transpose of (3.2» with associated boundary conditi.:ms

t/J,,(I)(1) + 1'1/1"(3)(1) ::= 0

Dt/J"(3)(1) - t/J"(1)(1) ::= 0,

(3.6)

(3.7)

(3.8)

tThis is another advantage of the present formulation-the Little and Childs derived functions do not appear to be the
solutions of any underlying matrix differential equation.

tThe construction of biorthogonal functions for the (2, 4)-problem is a modification of the work of Klemm [41, Klemm and
Little (5) who treated the full non-axisymmetric end loading problem. Putting 9 '" o. afae '" 0 in their construction gives the
biorthogonality given here. However, their construction for the (I, 3)-problem does not lead to a pure biorthogonality from
which the coefficients can be determined explicitly, and the construction described below is new.
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then if «*» denotes 101 (*). r dr

and consequently
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(3.9)

(3.10)

The same construction may be obtained for the (2, 4)-canonical problem. This time the required
matrix differential equation is

with corresponding boundary conditions

(3. 12)

(3.13)

and the adjoint equation and boundary conditions are

(I + v)Dl/!n(4)(l) = Dl/!n(2)(l) + JIl/In(2)(1) (3. 15)

t/!n(4)(l) = 0 (3.16)

resulting in the biorthgonality

(3.17)

In terms of the Bessel functions the two biorthogonal vectors are given by

where

I
A = 2 2

n 2(1 + v)An J. (An)P(An)

1
Bn = 2(1 + v)AJ,2(An)P(An)

P(An) = - A/J0
2(An)+2(1- v)A,.JO<An)J,(An) - 2(1 - v)J/(An)

and the normalising factors An and Bn have been introduced so that

(cPm(l)t/!n(l) + cPm(3)t/!nI3» = 8mn

(cPmI2)t/!nI2)+ cPm(4)t/!nI4) = 8mn·

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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It is interesting to note that as in Spence [2) this formulation exhibits what might be called a
"self-biorthogonality" where

(3.25)

and

(3.26)

In contrast, in the formulation of Little and Childs the (1, 3)-biorthogonal functions are given
in terms of the (2,4)-derived functions, and vice versa.

4. OPTIMAL WEIGHTING FUNCTIONS

In this section we consider the stress problem in which

a ( - f(l)ar (Jzz)z=o = (r)

and (4.1)

are prescribed functions of r. This does not fall into the class of canonical end problems
categorised in Section 1. As in the case Of the strip problem, we now seek weighting functions
of the form

(4.2)

(4.3)

where A, B, C and D are constants to be determined. (The choice A = - 21', B =(1- v), C =0,
D =' - (1 + v) would produce the biorthogonal functions t/Jm(l), t/Jm(2l defined in Section 3, but as
will be seen these are not optimal for the non-canonical problem.)

An infinite set of linear equations for the coefficients c" in the derived expansions

til =L C"cP"(ll

"

t 2
) =L C"cP"(2l

"

(4.4)

(4.5)

is obtained by combining the quadratures of (4.4) times Xm(l) and (4.5) times Xm(2l for each m.

This yields the set

~ Am"c" == dm (4.6)
"

where

An", = (Xm(l)cP"(1) + Xm(2)cP"(2) (4.7)

and

d", = (Xm(l)t<I) + Xm(2)f(2». (4.8)
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We now choose the constants A, B, C and D so as to make the off-diagonal elements of the
matrix A as small as possible in absolute value compared with the diagonal elements. For this
purpose the scalar products

(4.9)

have been calculated explicitly. The expressions are cumbersome and are not given here,t but
the salient feature is that the first three contain the factor (Am2

- A/r3
• As was noted by

Spence[21 for the strip problem, the presence of any negative power of (Am - An) in the matrix
Amn leads to divergent row sum norms. The four constants A, B, C and D provide just
sufficient freedom to suppress all such factors in the denominator.

The procedure for determining the optimal choice for the constants A, B, C and D involves
taking the matrix elements (4.7) with Xnl(l) and Xm(2) given by (4.2,3), and dividing out the
unwanted factors (Am - Anr' giving three equations for the four constants.

Using the quadratures (4.9) the general matrix element Amn may be written in the form

4Am4An4Jt(Am)Jl(An){ C ~ 4 3 2
(Am +A

n
)3(A

m
_ A

n
)3 [- ( - DO + V»A", + 2BO + V)AmAn - (C +DO + v»Am An

-(3A +3Bv)AII/A/+(A +Bv)A'/V,(AII,)Jo(An ) +Am
2
[ -(A + BV)Am

3 +(C - DO + V»A,/An

+(3A - 2B +Bv)AmA/+ (C +DO + v»A/IJo(Am)J\(An)}

+a term subdominant for large Am' Aft' (4.10)

The condition that the two terms multiplying the Bessel function products have a factor
(Am - A,,) is the same. namely

A- B +C =0, (4.11)

and it turns out that we can divide out the other two factors (Am - An) from the above
expression if the two equations

A+Bv+D(l+v)==O

and

A+Bv-C-D(1+v)=O

are satisfied, leaving a dominant term free of the undesirable factors (Am - An):

The three eqns (4.11, 12. 13) lead to the values

A = - (1- 2v); B == - 3; C = - 2(1 + v); D = I.

The resulting weighting functions are thus

(4.12)

(4.13)

(4.14)

Xm(1) =2( 1+ v)Am4[AmJt(A",)rJo(A",r) - {J,(Am) + AmJo(Am)}Jt(Amr)] (4.15)

Xm(2) = 20 + v)A,/[AmJ,(Am)rJo(Amr) - {J,(Am)+ AmJo(Am)}J1(A",r)] (4.16)

tMore details of the calculation given below may be found in [6}. obtainable from the author.
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A - 4(1 + V)Am4A/J1(Am)J1(A") 2 2 2J}
m" - (Am + A")3 {(3Am +3AmA" + An )J\(Am)Jo(An) + Am o(A., )J\(An)

4(1- V2)Am4A,,3J\2(Am)J/(A")(3Am+ A")
(Am +A")2

(4.17)

(4.18)

It is interesting to note that although the constants A, B, C and D have been derived only
from consideration of the dominant term (4.10), the subdominant term in the resulting matrix
element (4.17) is also free of these factors. In order to see why this choice of constants should
give rise to a more stable matrix, it is possible to use the eigenfunction quadratures (4.9) given
explicitly in [6] and carry out an analysis of the asymptotic behaviour of the row sum norms
L" IAm"I/IAmml analogous to that given by Spence[2] for the strip problem. This shows that the
matrix elements for Optimal Weighting Functions given above give rise to smaller row sum
norms than for Unmodified Biorthogonal Weighting Functions, as shown by the results in Table
1.

5. DETAILS OF THE NUMERICAL RESULTS

In order to test the Optimal Weighting Functions (O.W.F.) derived in Section 4 and compare
them with Unmodified Biorthogonal Weighting Functions (U.B.W.F.), a number of sample
stress distributions were considered, and here we present results for two of these:

Case 1 U zz = 1- 2r2

Ur: =O.

Case 2 U zz = 0

The first distribution is smooth, continuous and self-equilibrated, whereas the second
distribution is incompatible with the edge conditions on r = 1. This second distribution presents
a much more severe test than the first case, and in fact the decay of the coefficients is not
sufficiently rapid for the partial sums to converge, and Cesaro sums have been summed instead
(see Joseph [9], Joseph and Sturges [10)).

Three features of the numerical results obtained are worthy of note, showing the advantages
offered by Optimal Weighting functions. These are

(1) The improvement in diagonal dominance of the truncated matrices.
(ii) The increase in stability of the earlier coefficients as the order of truncation is increased.
(iii) Improved convergence to the prescribed data for various orders of truncation.
The improvement in diagonal dominance of the truncated matrices can be seen in Table 1.

Not only are the row sum norms less for Optimal Weighting Functions than for Unmodified
Biorthogonal Weighting functions, but they are decreasing with the row index, and they are less

Table 1. r" IA"",I/\A"""I for N = 50. 100 and for various values of the row index 111

N~ ~,o No I00

m UBW!" OWF m UBWF ow~

10 6.5801 :< 76J8 10 6 . 93~ 1 4 6334
:.'0 Q.OJ41 2.9gee. 20 9 J 039 3 8639
30 J] 2E:>04 2 5358 30 1 J. 3648 3. 3871
40 13. 2192 2 211E> 40 J3.4944 3 0445
~.O 8 77'18 1 .967:< 50 15 .505G 2 7791

GO 17 422~ 2 56'40
70 J9 2549 ~ 3844
80 20.9906 2 :2 31 :3

~O 2:'.4725 :.' 0986

100 14.2170 1.9820
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Table 2(a). The first two coefficients for u" =1- 2r2 u" =0 using various values of N

Unnu""ll t.lllE'd f'JorthC)gl.."ll1il] Weighting F'unctio1':s

903

N

10
20
50

100

RIO (.~ )
I

-0. 11<;102E-l
- O. 16"'8<;E- 1
-0.11;F;22~-1

-0.11;5132£-1
- 0.165£.1>£-1

111'1(t: )
1

0.1198SE-l
0.14775E-l
0.14578E-l
0.14556E-l
0.14547E-l

Re(t: )
2

O. 34817E- 3
0.47215E-4
0.66895E-4
0.69037E-4
0.69Q04E-4

1m(t: )
2

-0. 11;901E- 3

- 0 . 25 240E- 3
- 0 . 241; 15£- 3
- 0 24541;£- 3
-0. 24518E- 3

Ol't.1mal weighting Funt:tions

N

5
10
20
50

100

R",(<:, )
1

-0.16470E-l
-0.16588£-1
-0.16572£-1
-0.16558E-l
-0.165571:-1

Im(C
1

)

0.14509E-l
0.14566£-1
0.14549£-1
0.14543£-1
0.14542E-l

R<?(<:: )
2

O. 75lF..1E- 3
0.68057E-4
0.69270E-4
0.70286£-4
0.70409£-4

1m(C )
2

-0.24251£- 3
-0.24S54£-3
-0.24531E-3
- O. 24505E- 3
-0.24502£- 3

Table 2(b). The first two coefficients for u:: = 0 u" = r using various values of N

Unmodifi~d Biorthogonal Weighting Funct.1ons

N

5
10
20
50

100

Re(c )
1

-0.10644£-+0
-0.31706£-1
-0.114213£-1

O. 83730E- 2
0.5481;5£-1

1m(c )
1

0.67713E-l
0.26662E-l
0.15645£-1
0.49957£-2

-0.20350£-1

Re(C
2

)

-0.68485£-2
- O. 23732E- 2
-0.12932E-2
-0.22527£-3

0.22660£-2

1m(c )
2

-0.14244£-2
- 0.20219£- 3

0.148313£- 3
0.49061£- 3
0.12974£-2

N

5
10
20
50

100

r

0.0
0.1
0.2
0 .. 3
0.4
0.5
0.6
0.7
0.13
0.9
1.0

r

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Optimal Weighting Funci:ions

Re(c 1 ) 1m(c 1) Re(C
2

) 1m(C
2

)

0.27944E-l -0.64030E-2 0.63269£- 3 0.82867£- 3
0.29602£-1 -0.72516E-2 0.77091£-3 0.95079£- 3
0.31084£-1 -0.79309E-2 0.98376£- 3 0.97495£-3
0.32631E-l -0.86290E-2 0.99925E-3 0.90250E-3
0.33516E-l -0.90251£-2 0.10649E-2 0.91860E-3

Table 3. Summed expansions for u" = 1- 2r2
(7" = 0

Unmodified Biorthogonlll Weighti..ng I"unctions

O:z=1-2r 2 N=5 N=10 N=50 N=100

1.00 0.8293 1. 0173 1.0006 1.0027
0.99 0.9934 0.9925 0.9803 0.9.804
0.92 0.9936 0.9299 0.9204 0.9204
0.82 0.7422 0.9237 0.9204 0.8204
0.68 0.5895 0.6874 0.6803 0.6803
0.50 0.4723 0.5047 0.5003 0.5003
0.28 0.2426 0.2939 0.2802 0.2903
0.02 -0.0451 0.0241 0.0202 0.0203

-0.29 -0.2966 -0.2905 -0.2800 -0.27913
-0.62 -0.5559 -0.6254 -0.6203 -0.6200
-1.00 -0.7252 -1. 0257 -1.0015 -0.0006

Optimlll weighting I"unctions

O:z =1-2r 2 N=5 N=10 N=50 N=100

1.00 1.0243 0.9794 1.0000 0.9997
0.98 0.9830 0.9890 0.9800 0.9800
0.92 0.9070 0.9135 0.9201 0.9200
0.82 0.8277 0.8264 0.8200 0.8199
0.68 0.6882 0.6744 0.6800 0.6799
0.50 0.4841 0.5056 0.5000 0.4999
0.28 0.2781 0.2754 0.2799 0.2799
0.02 0.0386 0.0239 0.0202 0.0199

-0.28 -0.2892 -0.2917 -0.2803 -0.2801
-0.62 -0.6262 -0.6213 -0.6195 - 0.6201
-1.00 -1.0034 -0.9990 -0.9999 -1.0000
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Table 4. Summed expansions for 0'" ~ 0 0'" ~ r. Note that the partial sums for this distribution are not
convergent, and the results given are Cesaro sums

UnrnodJ.fied BJ.orthogonal w€'lghtJ.ng FunCTions

r °rz
=r N=S N=10 N~50 N= 100

0 .0 0 0 0, 0000 0 .0000 0 0000 O. 0000

0 .1 O. 1 0.6512 0 0311 O. 3377 O. 4175

0 2 O. 2 0.2314 0 .0559 -0. 1055 0 .4858

O. 3 0 3 -0.7526 0 .0084 o. 3475 O. 5616

0 .4 0 4 -1.0633 -0 0862 0.0844 0 62"7
0.5 0 .5 -0.6903 -0. 0698 0.3589 0 .6841

0.6 O. 6 -0.7798 -0. 1509 0.2812 0 7432
0.7 O. 7 -1,5204 -0.1756 0.3425 0 .8352

0 .8 0 .8 -1,5147 0,2722 0,4142 1 .0034

0 . 9 O . 9 -0,2523 -0,0649 0.4407 1 .1914
1 .0 1 0 0,0000 0.0000 0 0000 0 0000

Optimal INeJ.ghtJ.ng Functions

°rz
=r N=5 N=10 N=50 N=lOO

0 0 0 ,0 0 ,0000 0 0000 0 .0000 0.0000
0.1 O. 1 0, 035& 0 1071 0 09&5 0.0967
0.2 O. 2 O. 1574 O. 1754 O. lee8 0.1926
0.3 O. 3 O. 3124 O. <l875 O. 2857 0 2884
0.4 O. 4 O. 3889 0 3565 0 3774 0.3839
0.5 0.5 0.402'7 0 .4673 0 .4738 0.4790

0.6 0.6 0.4898 0 5248 0 5625 0.5734
0.'7 0 7 0.6656 0 6414 0 6595 0.6667
0.8 0 8 0.7029 0 6588 0 7390 0.7579
0.9 O. 9 0.4080 0 7860 0 8420 0 8412
1.0 1.0 0,0000 0 0000 0 0000 0 0000

subject to the effects of truncation. Although the truncated matrices are not strictly diagonally
dominated as in the strip case [2], so that truncation is still not theoretically justified, the use of
Optimal weighting functions can be seen from the results in Tables 2-4 to produce a much more
satisfactory solution.

Tables 2{a-b) list the first two coefficients for varying orders of truncation (by the order of
truncation we mean the number of pairs of eigenvalues used. Thus N = 5 means that a 10 x 10
system has been solved). The increased stability in these early coefficients is apparent-for the
first distribution Re(cl) calculated using OWF and listed in Table 2{a) only changes in the fourth
decimal place as the order of truncation is increased from N = 10 to N =100, whereas
comparable accuracy is only obtained from UBWF in Table 2(b) when N = 50. For the
incompatible distribution the behaviour of the coefficients obtained from UBWF is very erratic.

, If>rm
2 TE'l"'ms
J TE>rm5
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.1 .2
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Fig. 2. Convergence of the expansion for 0'" ~ 1- 2r' when N ~ 100.



End stress calculations on elastic cylinders 905

1.8

.S

.8
I.B

1.8

.S

.8
.1 .2 .3 .~

Fig. 3(a). Divergence of the partial sums for the incompatible stress distribution (1'" =r (T" =0 with
N =100. Expansion summed to 20 terms. (b) Convergence of the Cesaro sums for u" =r showing a Gibbs'

phenomenon near r =I. N =100. Expansion summed to 20 terms.

and even for N:::: 100 they do not seem to be approaching a limit, whereas for OWF the
coefficients do appear to be converging, albeit more slowly than for case 1.

Tables 3 and 4 show the expansions summed for the two distributions evaluated on z:::: 0
and compared with the prescribed stress. The results shown in Table 3(a) for the smooth
distribution 0'.. :::: 1- 2r2 are slightly more accurate for OWF than for UBWF, but as can be
seen from the graph of the partial sums for this distribution in Fig. 2 the convergence is very
rapid in any case. There is, however, a striking difference for the incompatible distribution O'rz.

It should be stressed again that the decay of the coefficients for this case is not sufficiently rapid
for the series of partial sums to converge, and Fejer's method of summing Cesaro sums has
been employed. This situation and its analogy with classical Fourier series is a very interesting
point of analysis, and has been discussed recently by Joseph, Sturges and Warner[ll]. The
results obtained from UBWF do not seem to be converging, even when N :::: 100. On the other
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hand OWF are giving quite reasonable results when Cesaro sums are calculated, although as
may be seen from Fig. 3(a-b) the Gibbs' phenomenon near r == 1 has not been entirely
suppressed,
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